T-7 Worksheet (Review)

Name_____

Make a sketch of the given angle and find the measure of the reference angle.

1. 107°

2. 292°

3. 138°10′

The terminal side of an angle with measure θ in standard position passes through the given point. Evaluate $sin\theta$, $cos\theta$ and $tan\theta$.

4. P(-6,-8)

5. P (5,10)

6. P(-2,3)

7. P(4,3)

 θ is an angle in standard position which terminates in the given quadrant. One of the functions $sin\theta$, $cos\theta$, or $tan\theta$ is given. Find the other two trig functions.

8. $tan\theta = -\frac{3}{5}$, Quad II

9. $cos\theta = -\frac{3}{5}$, Quad III

Find the four-significant-digit approximation of the given trigonometric function values:

10.
$$\cos 25^{\circ}8' =$$

11.
$$\cos 27^{\circ}46' =$$

12.
$$\sec 83^{\circ}36' =$$

13.
$$\sec 53^{\circ}36' =$$

14.
$$\sin 62^{\circ}35' =$$

15.
$$\csc 54^{\circ}22' =$$

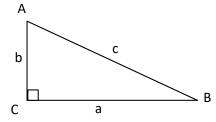
Find the measure of each positive acute angle A to the nearest minute:

17.
$$\sin A = 0.5698$$

18.
$$\csc A = 1.809$$

19.
$$\cot A = 1.218$$

20.
$$tan A = 2.005$$


21.
$$\cot A = 75.62$$

Find the required function:

22. Given
$$\sin 30^\circ = \frac{1}{2}$$

23. Given
$$\sin 60^\circ = \frac{\sqrt{3}}{2}$$

Any trigonometric function of a positive acute angle is equal to the co-function of the complementary angle. (Cosine literally means "complement's sine"; cotangent means "complement's tangent"; and cosecant means "complement's secant.")

$$\sin A = \cos B = \frac{a}{c} \qquad \qquad \cos A = \sin B = \frac{b}{c}$$

$$\cos A = \sin B = \frac{b}{a}$$

$$\tan A = \cot B = \frac{a}{b}$$

$$\sec A = \csc B = \frac{c}{b}$$

Use the information above to complete the following:

24.
$$\sin 13^{\circ}43' = \cos _{\underline{}}$$

25.
$$\sin 89^{\circ}10' = \cos \underline{\hspace{1cm}}$$

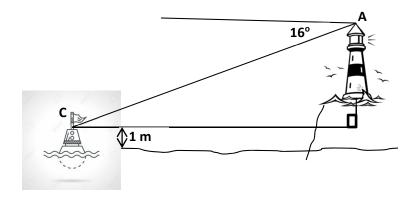
26.
$$\cos 32^{\circ}9' = \sin \underline{\hspace{1cm}}$$

State the quadrant in which each angle terminates:

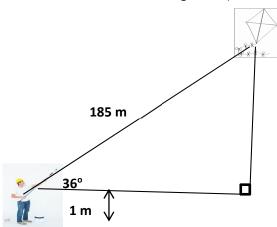
Find the exact values for all six trig functions of 45°. 33.

Use a calculator to find the following trig function values:

34.
$$\tan 73^{\circ}47' =$$

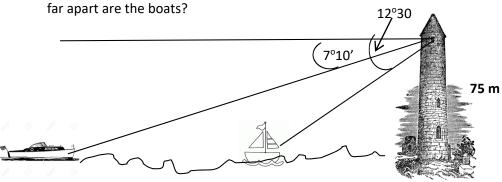

Find the angles (to the nearest minute) represented by the following, where $0^\circ < A < 90^\circ$

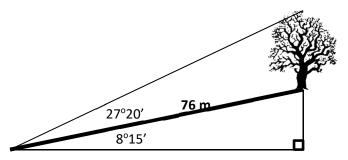
35.
$$\sin A = 0.7953$$


36.
$$\cos A = 0.7953$$

Solve the following problems.

37. For the buoy and the lighthouse, find the line of sight distance, AC, from the top of the lighthouse to the buoy.


38. A kite string is 185 m long and makes an angle of 36° with the horizontal. What is the altitude of the kite? (assume that the string is a straight line and that it is held one meter above the ground.)


39. A ladder is 12.2 meters long can be placed so that it will reach a window 10.1 meters above the ground on one side of the street. If a person tips it back without moving its foot, it will reach a window 6.4 m above the ground on the other side. Find the width of the street.

40. The Hirsch Building and the County Hospital are 38 m apart. From a window in the Hirsch Building, the angle of elevation to the top of the hospital is 73°. From the same window the angle of depression to the ground at the base of the hospital is 64°. Find the height of the hospital.

41. Two boats are observed from a tower 75 meters above a lake. The angles of depression are 12°30′ and 7°10′. How

42. A certain tree grows vertically on a hill which makes an angle of 8°15′ with the horizontal. When the angle of elevation to the sun is 27°20′ the end of the tree's shadow is 76 meters directly downhill from the base of the tree. Find the height of the tree.

